
RESEARCH ARTICLE

James G. Ditty Æ Richard F. Shaw Æ Joseph S. Cope

Distribution of carangid larvae (Teleostei: Carangidae)
and concentrations of zooplankton in the northern Gulf of Mexico,
with illustrations of early Hemicaranx amblyrhynchus
and Caranx spp. larvae

Received: 5 May 2003 / Accepted: 5 April 2004 / Published online: 7 July 2004
� Springer-Verlag 2004

Abstract We examined 1,825 bongo-net samples col-
lected during Southeast Area Monitoring and Assess-
ment Program (SEAMAP) ichthyoplankton surveys of
United States Gulf of Mexico waters (1982–1986) for
carangid larvae. Objectives were to describe the distri-
bution of carangid larvae and to examine distribution
patterns relative to areas of higher zooplankton volumes
in order to reveal areas that may be important nurseries.
Samples contained about 29,200 carangid larvae from
13 species or species complexes in 11 genera. Chloros-
combrus chrysurusand Decapterus punctatus accounted
for 91.7% of all larvae. We found that the ‘scads’
(D.punctatus, Trachurus lathami, and Selar crumenoph-
thalmus) utilize temporally and/or spatially distinct
spawning strategies to reduce co-occurrence of larvae.
Samples contained fewer larvae than expected of the
amberjacks (Seriola spp.), Caranx crysos, and C. hippos/
latus given the abundance of adults in the survey area,
possibly due to inadequate sampling at appropriate
times and locations, gear avoidance, or gear bias. Zoo-
plankton displacement volumes (ZDVs) differed among
regions and seasons and were inversely related to surface
salinity and station depth. Differences among years were
not significant. ZDVs were consistently highest near the
Mississippi River delta and along the western Louisiana/
eastern Texas shelf, and moderately high during summer

and fall along the shelf break, with localized pockets of
elevated volumes over the eastern Gulf shelf. We suggest
that Chloroscombrus chrysurus,D. punctatus, T. lathami,
and possibly Oligoplites saurus, Hemicaranx am-
blyrhynchus and Caranx crysos spawn in frontal areas
and/or along other hydrographic features that promote
higher productivity. We provide new illustrations and
descriptive information for the larvae of H. amblyrhyn-
chus and discuss characters that separate early larvae of
several species of Caranx.

Introduction

Members of the family Carangidae represent about 5%
of the world’s annual marine finfish landings, with major
fisheries concentrating primarily onDecapterus punctatus
(round scad) and Trachurus lathami (rough scad) (Leak
1977). Although Nakamura (1980) reported 24 species of
carangids in the northern Gulf of Mexico (Gulf), infor-
mation on the distribution and abundance of most ca-
rangids is inadequate to determine the feasibility of
exploitation or greater exploitation. Exploratory surveys
of the Gulf report potentially commercial quantities of
adult D. punctatus, T.lathami, Caranx crysos (blue run-
ner), and Chloroscombrus chrysurus(Atlantic bumper),
but only D. punctatus are presently exploited (Juhl 1966;
Bullis and Carpenter 1968; Bullis and Thompson 1970;
Klima 1971). The small but abundant C.chrysurus may
serve as an important food for predatory game and
commercially important fishes (Reintjes 1979) and has
value for reduction to fishmeal and fish oil (Leak 1977).
Other carangids are highly regarded as food (pom-
pano,Trachinotus spp.), game fish (Elagatis bipinnulata,
rainbow runner;Seriola spp., amberjack), or bait (Caranx
crysos, D. punctatus). Further, the amberjacks (Seriola
spp.) currently face over-exploitation because of a dra-
matic increase in landings and the demand for fresh fish
(Richards and McGowan 1989).
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The distribution of carangid larvae in the Gulf is
poorly known, with past studies focusing primarily on
select taxa (Montolio 1976; Lyons 1978) or surveys of
limited geographic and temporal coverage (Aprieto
1974; Houde et al. 1979; Leak 1981; Flores-Coto and
Sanchez-Ramirez 1989; Sanchez-Ramirez and Flores-
Coto 1993; Sanchez-Velasco and Flores-Coto 1994). A
better understanding of spawning areas and seasonal
spawning migrations requires basic information on the
distribution of larvae, which is suggestive of the prox-
imity of adult spawning concentrations (Houde 1982).
Given that some fisheries exploit only spawning aggre-
gations (Elwertowski and Boely 1971), a better under-
standing of the spatial and temporal distributions of
carangid larvae may hasten development of fisheries
(Leak 1981), permit better planning and development of
ichthyoplankton surveys for spawning biomass estima-
tion, and promote new fishery regulations for proper
management of both new and existing fisheries. Our
objectives were to describe the distribution of carangid
larvae from United States Gulf of Mexico waters (an
area that approximates the United States Exclusive
Economic Zone/Fishery Conservation Zone), and to
examine the distribution patterns of carangid larvae
relative to areas of higher zooplankton volumes in order
to reveal areas that may be important nurseries.

Material and methods

We examined 1,825 bongo-net samples for carangid lar-
vae collected during Southeast Area Monitoring and
Assessment Program (SEAMAP) ichthyoplankton sur-
veys of United States Gulf of Mexico waters (i.e., the
northernGulf) from 1982 through 1986 (Fig. 1). National
Marine Fisheries Service (NMFS) vessels sampled waters
more than 10 m deep in a systematic grid of stations at
about 55-km intervals. Coastal waters less than 10 mdeep
were sampled by participating Gulf States based on their
sampling grid design. Texas did not participate.

Cruise survey procedures and zooplankton ‘wet’
volume displacement methods followed those outlined
by Smith and Richardson (1977). Briefly, tows were
made with a 60-cm bongo net (0.333-mm mesh) hauled-
obliquely from within 5 m of the bottom or from a
maximum depth of 200 m. A flowmeter mounted in the
mouth of each net estimated the volume of water filtered.
Ship speed was about 45 m/min and net retrieval was
20 m/min. Tows extended a minimum of 10 min in clear
water or 5 min if waters were turbid and stations were
less than 95 m deep. Time of the tow (day/night) de-
pended on when the ship occupied a station. Differences
between the number of bongo-net samples displaced to
estimate zooplankton displacement volumes (ZDV)
(n=1,664) and the number of collections examined for
fish larvae (n=1,825) result from missing data. Zoo-
plankton samples were strained by sieve to remove large
coelenterates and non-planktonic organisms larger than

2.5 cm, displaced, and sorted for fish larvae. We stan-
dardized resulting ZDV to ml/100 m3and natural-log
transformed values before statistical analyses. Standard
SEAMAP sampling protocol fixed samples in 10%
buffered formalin followed by a transfer to 70% ethyl
alcohol after 48 h.

We based larval identifications on existing descriptive
literature (i.e., Aprieto 1974; Laroche et. al. 1984), where
possible, and our own descriptive work. We did not
separate larvae smaller than 5 mm standard length (SL)
of jack crevalle (Caranx hippos) from those of horse-eye
jack (C. latus), or yellow jack [C. (Carangoides)barthol-
omaei] from those of bar jack [C. (Carangoides) ruber]
because early larvae of these species have not been
adequately described. Instead, we grouped these species
into complexes (C. hippos/latus or C. bartholomaei/ru-
ber). In addition, current descriptions of small Seriola
and Trachinotus larvae are insufficient to permit reliable
species separation and we discuss these at the generic
level. We considered SL synonymous with notochord
length in preflexion larvae and recorded all measure-
ments as mm SL. We excluded carangids larger than
13.9 mm from analyses because bongo nets do not effi-
ciently sample larger sizes.

Annual SEAMAP ichthyoplankton surveys did not
sample all regions, months, and depth zones uniformly.
Consequently, we do not compare inter-annual vari-
ability because of substantial differences in the temporal
and spatial distributions of stations. Instead, we calcu-
lated a density (number of larvae/100 m3) for each sta-
tion and an arithmetic mean density for each month and
region-season combination. We summed densities across
stations within each category (i.e., month, season, depth,
region, etc.) and divided the sum by the total number of
stations in that category. Month was summed across
years because not all months and regions were uniformly
sampled over the study period.

We divided the northern Gulf into three geographic
regions and three depth zones to examine carangid and
zooplankton distribution patterns. Station depth served
as a surrogate for distance from shore and the declining
productivity gradient from the more eutrophic coastal
waters to the oligotrophic open gulf waters. Inner con-
tinental shelf waters were less than 40 m deep; outer
shelf waters were from 40 m to 180 m deep; and oceanic
waters were those more than 180 m deep (Fig. 1). Dif-
ferences among water masses, intensity of upwelling,
and proximity to sources of freshwater and nutrient in-
put can affect distribution and abundance patterns of
zooplankton and fish larvae (Houde and Chitty 1976).
The 40 m isobath, however, divided the continental shelf
into areas of comparable size, which was convenient for
evaluating differences in abundance between the inner
and outer continental shelf. Latitude 24� 30¢ N was the
southern boundary of the survey area in the eastern Gulf
and 26� 00¢ N the southern boundary in the central and
western Gulf (Fig. 1).

Hydrographic data were collected at the sea surface
primarily by bucket. Water temperature was taken with
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Fig. 1 Stations sampled during
Southeast Assessment and
Monitoring Program bongo-net
surveys of the northern Gulf of
Mexico (1982 through 1986)
and defined areas
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a hand-held thermometer and a water sample was
returned to the laboratory for salinity analysis. We
weighted hydrographic data by the number of larvae
collected at each station before calculating the median
and mean for each parameter, a method that emphasized
the distribution of larvae rather than equally weighting
stations. We are aware, however, that surface water
temperature and salinity may be poor correlates of larval
distribution patterns for those species not concentrated
near the surface (Houde et al. 1979). Consequently, we
used a percent cumulative frequency of 75% to define
the hydrographic conditions (water temperature, salin-
ity, and station depth) most often associated with the
occurrence of larvae.

We grouped 3-month intervals into seasons based on
monthly average water temperatures in the survey area
as follows: Spring (March–May), Summer (June–Au-
gust), Fall (September–November), and Winter
(December–February). Cruises during April and May
sampled primarily oceanic waters beyond the shelf in
conjunction with NMFS annual larval tuna surveys.
Cruises during March and from June through Novem-
ber sampled waters primarily over or immediately
adjacent to the continental shelf (Fig. 1). We excluded
winter from analyses, except in compiling hydrographic
information for Trachurus lathami, because sampling
was restricted primarily to waters near the Mississippi
River delta in December.

Distribution and abundance patterns of carangid
larvae permit inferences about adult distributions,
spawning areas, and spawning times (Houde 1982).
Accordingly, we compared the frequency distribution of
stations where larvae were collected (positive catch sta-
tions) among regions, seasons, depth zones, and diel
periods, respectively, with a likelihood ratio chi-square
[G2,a=0.05 (Daniel 1990)] and evaluated significant
differences through contrasts. The original model in-
cluded season, region, depth zone, and diel period as
factors. We retested the model after excluding diel and all
three-way interactions, which had a minimal effect on the
model. We used a non-parametric Wilcoxon signed-
ranks test to assess the significance of diel differences in
density of larvae [a=0.05 (Daniel 1990)] and canonical
correlation to assess the relationship between density of
larvae, ZDV, and environmental variables. We consid-
ered relationships ‘strong’ if correlations were greater
than 0.70, ‘moderately strong’ if greater than 0.60, ‘sig-
nificant’ if greater than 0.50, and ‘weak’ if less than 0.50.
We ran the canonical analyses on all stations sampled for
the season(s) and region(s) of peak abundance, which
was species-specific. We used ArcView GIS 3.1 software,
a kriging function, linear semi-variogram, and the or-
dinary Gaussian method to generate ZDV plots. Cell size
was 2 km and had a fixed radius. An average of the five
nearest neighbors provided the cell mean. We used a
nonparametric Friedman test (Daniel 1990) to examine
differences in ZDV among seasons, regions, and depth
zones. A Tukey’s multiple range test established the
significance of distribution patterns. T
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Results

Species distributions

Collections contained 29,203 carangid larvae from
13 species or species complexes in 11 genera. Numeri-
cally, Chloroscombrus chrysurus accounted for 82.9% of
all larvae collected, followed by D. punctatus (8.8%),
Caranx hippos/latus (2.9%), and C. crysos (1.9%). Other
species contributed only 997 larvae or 3.5% to the
numerical total. Larvae of Chloroscombrus chrysu-
rus(n=24,218) were abundant and widely distributed
from May through November, but were most frequently
collected during summer (Tables 1, 2). C. chrysurus were
more abundant west than east of the Mississippi River
delta, and relatively uncommon south of Tampa Bay,
Florida (Fig. 2). Larvae were collected primarily over
the inner shelf at surface water temperatures of 27�C and
higher (Table 3).

D. punctatus (n=2,582) was the second most frequent
and abundant taxon. Round scad larvae were collected
primarily off Florida during fall (Fig. 2) at stations less
than 70 m deep, and at water temperatures and salinities
of 25�C and 33.7 ppt or higher (Tables 1, 2, 3). Al-
though D.punctatus was caught during all months sam-

pled, only four stations in December contained larvae
(Table 1), all south of 27� 00¢ N (i.e., below Tampa Bay,
Florida) in waters more than 1,000 m deep. Larvae of T.
lathami (n=240) were collected during December and
from March through May, and those of Selar crumen-
ophthalmus (n=256) were captured from April through
November, but most frequently from August through
November (Table 1). Both T. lathami and S.crumen-
ophthalmus were taken primarily at stations deeper than
40 m; however, T.lathami was collected in cooler waters
(median 21.4�C) than S.crumenophthalmus (median
28.2�C; Table 3). Most positive catch stations for
S.crumenophthalmus were west of the Mississippi River
delta and along the outer shelf. Sampling was too spa-
tially restricted from December through February to
assess adequately the gulf-wide distribution of T. lathami
during winter, when larvae were abundant near the
Mississippi River delta.

SEAMAP samples contained at least three species of
Caranx (Fig. 3). We separated most early Caranx larvae
into species or species complexes based on differences in
pigmentation and body shape. Caranx crysos larvae have
a series of discrete melanophores ventrally along the vis-
ceral mass and a pronounced gap in dorsal pigmentation
between the nape and developing soft dorsal fin origin
(Fig. 3a). EarlyC. hippos/latus andC. bartholomaei/ruber

Table 2 Mean density of
carangid larvae (number/
100 m3) for the northern Gulf
of Mexico by season and
region. Density by season and
region was calculated by
summing densities across
stations and dividing by the
total number of stations
sampled. Numbers in
parentheses are stations where
larvae were collected and total
stations sampled

aMean density less than
0.05/100 m3

bMean density less than
0.005/100 m3

Region Spring
(March–May)

Summer
(June–August)

Fall (September–November) Regional
mean

Chloroscombrus chrysurus
Eastern 0.0 (0/139) 3.5 (19/171) 5.6 (22/109) 2.9 (41/419)
Central 0.1 (5/383) 53.9 (154/299) 10.2 (49/209) 20.5 (208/891)
Western 0.0 (0/77) 57.6 (120/247) 38.2 (36/83) 42.8 (156/407)
Season mean <0.1 (5/599) 43.1 (293/717) 14.7 (107/401)

Decapterus punctatus
Eastern 0.7 (19/139) 6.3 (70/171) 14.9 (65/109) 6.7 (154/419)
Central a(8/383) 0.1 (10/299) 1.3 (35/209) 0.4 (53/891)
Western 0.0 (0/77) 0.2 (22/247) a(1/83) 0.1 (23/407)
Season mean 0.2 (27/599) 1.6 (102/717) 4.7 (101/401)

Trachurus lathami
Eastern <0.1 (12/139) 0.0 (0/171) 0.0 (0/109) a(12/419)
Central 0.5 (43/383) 0.0 (0/299) 0.0 (0/209) 0.2 (43/891)
Western <0.1 (7/77) 0.0 (0/247) 0.0 (0/83) a(7/407)
Season mean 0.3 (62/599) 0.0 (0/717) 0.0 (0/401)

Selar crumenophthalmus
Eastern a(2/139) 0.2 (9/171) 0.2 (15/109) 0.1 (26/419)
Central b(2/383) 0.1 (12/299) 0.2 (24/209) <0.1 (38/891)
Western a(5/77) 0.3 (36/247) 0.2 (7/83) 0.2 (48/407)
Season mean a(9/599) 0.2 (57/717) 0.2 (46/401)

Caranx crysos
Eastern a(2/139) a(7/171) a(4/109) a(13/419)
Central a(5/383) 0.3 (62/299) a(3/209) 0.1 (70/891)
Western 0.0 (0/77) 1.4 (78/247) a(1/83) 0.9 (79/407)
Season mean a(7/599) 0.6 (147/717) a(8/401)

C. hippos/latus
Eastern 0.2 (20/139) a(3/171) a(4/109) <0.1 (27/419)
Central 0.3 (31/383) 0.3 (27/299) 0.1 (12/209) 0.2 (70/891)
Western 0.7 (24/77) 0.3 (38/247) a(2/83) 0.3 (64/407)
Season mean 0.3 (75/599) 0.2 (68/717) <0.1 (18/401)

Selene spp.
Eastern 0.0 (0/139) a(4/171) b(1/109) a(5/419)
Central 0.0 (0/383) 0.3 (39/299) <0.1 (11/209) 0.1 (50/891)
Western b(1/77) 0.6 (59/247) 0.3 (7/83) 0.4 (67/407)
Season mean b(1/599) 0.3 (102/717) 0.1 (19/401)
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larvae have a nearly contiguous series of melanophores
ventrally along the visceral mass and dorsally along the
trunk (Fig. 3d, h). Early C.bartholomaei/ruber larvae,
however, have a ‘deflected’ dorsolateral row of pigments
that runs diagonally across the trunk and pigment ven-
trally along the caudal peduncle that C.hippos/latus lack
(Fig. 3d, h). Early larvae of C.bartholomaei/ruber also
have a series of trunk melanophores along the lateral
midline that extends from just behind the head to the
caudal peduncle. This same lateral midline series begins
behind the anus in C. hippos/latus larvae (Fig. 3d, e, h).
After notochord flexion, the body profile of C. hippos/
latus andC.bartholomaei/ruber becomes deeper and more
rounded than in C. crysos of comparable length (Fig. 3).

Larvae of C. hippos/latus(n=848) and C. crysos
(n=558) had similar spatial, but different temporal dis-
tributions. While both taxa were more abundant west
than east of the Mississippi River delta and over the
outer continental shelf, C. hippos/latus was collected
primarily during May and June at 33 ppt and higher,
and C. crysos was collected primarily from June to
August at less than 33 ppt (Tables 1, 3). Both C. hippos/
latus and C. crysos exhibited diel catch differences that
favored higher catches during the day (P=0.001 and
P=0.002, respectively). SEAMAP samples contained
only six larvae of C. bartholomaei/ruber (3.5–5.5 mm),
all caught during May 1982 at three stations 3,148 m
deep near 26� 00¢ N, 87� 05¢ W (Fig. 4).

The larvae of other carangid species were relatively
uncommon. Selene spp. (n=329) larvae were most
abundant during summer over the outer continental
shelf and west of the Mississippi River delta (Tables 1, 2,
3). Early bluntnose jack larvae (Hemicaranx am-
blyrhynchus; n=64; 2.0–5.3 mm SL) were collected at
only 10 of 717 stations sampled during summer. All
positive catch stations were located along the Louisiana/
Texas inner shelf in waters less than 26 m deep (nearly
all during June at a salinity of 32 ppt; Tables 1, 3;
Fig. 4). We found that pigment on the roof of the mouth
and the bilateral and dorsal midline rows of pigment
separated H. amblyrhynchus larvae (Fig. 5) from those
of other co-occurring species. Larvae of Oligoplites

Table 3 Environmental data for stations where larvae were collected during SEAMAP bongo-net surveys (1982–1986) of the northern
Gulf of Mexico. Differences in the total number of stations sampled between parameters result from missing data. Data were combined
across seasons, regions, depth zones, and years

Species Number of
positive
stations

Median
salinity
(ppt)

Salinity
range
(ppt)

Number of
positive
stations

Median
temperature
(�C)

Temperature
range (�C)

Number of
positive
stations

Median
station
depth (m)

Depth
range (m)

Chloroscombrus chrysurus 384 29.8 10.4–36.6 393 29.0 22.7–33.0 405 21 4–651
Decapterus punctatus 203 35.2 17.2–37.1 223 27.9 19.0–33.3 230 40 8–3,347
Trachurus lathami 29 36.2 9.2–37.7 59 21.4 14.3–27.6 62 84 16–3,475
Selar crumenophthalmus 107 35.3 18.9–37.4 108 28.2 21.0–31.1 112 70 11–3,219
Caranx crysos 157 33.1 23.4–36.7 158 29.0 24.1–33.8 162 80 9–3,148
C. hippos/latus 136 35.8 13.4–38.1 158 27.4 22.7–32.2 161 395 9–3,413
Hemicaranx amblyrhynchus 10 30.9 24.8–33.0 9 28.6 27.0–29.4 10 12 8–26
Seriola spp. 22 36.1 18.7–37.8 28 26.9 21.3–29.6 29 208 18–3,203
Selene spp. 118 32.3 13.4–36.6 119 28.9 23.5–30.9 122 50 7–1,793
Oligoplites saurus 12 31.9 20.2–36.0 2 29.2 27.8–32.0 12 17 11–59

Fig. 2a–c Distribution of the larvae of three species of carangid
collected during Southeast Area Monitoring and Assessment
Program bongo-net surveys of the northern Gulf of Mexico
(1982 through 1986). Plots are for the month or season of greatest
abundance (i.e., August for Chloroscombrus chrysurus; fall for
Decapterus punctatus; and August for Caranx crysos)
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saurus (leatherjackets; n=54; 1.8–5.3 mm) were col-
lected from June through August, generally shoreward
of the 20 m isobath (Fig. 4). All Seriola spp. larvae

(n=48) smaller than 5.0 mm could not be identified to
species because dorsal and anal ray development was
incomplete. Seriola larvae were widely distributed from

Fig. 3 Early larvae of C. crysos
and two Caranx complexes
collected during SEAMAP
bongo-net surveys of the
northern Gulf of Mexico from
1982 through 1986: Caranx
crysos: a 3.4 mm, b 4.8 mm,
c 6.8 mm; Caranx hippos/latus:
d 3.6 mm, e 4.7 mm, f 7.1 mm,
g 13.2 mm; C. bartholomaei/
ruber: h 3.8 mm, i 5.5 mm
standard length

Fig. 4 Distribution of some less
abundant carangids collected
during SEAMAP bongo-net
surveys of the northern Gulf of
Mexico from 1982 through
1986. The distribution of
Oligoplites saurus overlaps that
of Hemicaranx amblyrhynchus
in the lighter gray area
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April through October and were collected primarily at
stations more than 40 m deep (Tables 1, 3; Fig. 4).
Samples contained two larvae of pompano (Trachinotus
spp.) and one African pompano (Alectis ciliaris). Both
Trachinotus larvae (2.2–2.3 mm) were caught during
April 1984 at stations more than 1,800 m deep (Fig. 4).
The only African pompano larva (7.5 mm) was collected
during June 1982 off South Florida at 36.3 ppt, 28.2�C,
and in waters 33 m deep (Fig. 4).

Zooplankton displacement volumes

Zooplankton displacement volumes (ZDVs) differed
among regions, with distance from shore, and seasonally
(Table 4). Overall, the central and western Gulf had
significantly higher ZDVs than did the eastern Gulf
(Table 5). ZDVs over the inner shelf (less than 40 m)
tripled from winter to spring and declined thereafter,
whereas volumes remained generally consistent
throughout the year over the outer shelf, and in oceanic
waters. Overall, ZDV was inversely related to surface
salinity (canonical loading=0.690) and station depth
(canonical loading=0.955), and positively related to
surface water temperatures, but not significantly so.
Differences among years were not significant.

ZDVs were consistently higher near the Mississippi
River delta and along the western Louisiana/east Texas
shelf, and moderately high along the shelf break during
summer and fall, with localized pockets of elevated
volumes over the eastern Gulf shelf (Fig. 6a–d). Simi-
larly, ZDVs were moderately high over the shelf break
during summer and fall, and also over the Florida
continental shelf during fall. ZDVs were high near the
Mississippi River Delta during winter (Fig. 6d).

The distribution of D. punctatus larvae over the
continental shelf during fall and of Chloroscombrus
chrysurus over the inner shelf during August (Fig. 2)
was significantly correlated with higher ZDVs (Ta-
ble 6). Despite the large number of plankton samples
taken over the study period (more than 1,800 sam-
ples), C.chrysurus and D. punctatus were the only
carangids abundant enough to statistically examine
distribution patterns relative to areas of higher ZDVs.
Nevertheless, locations along the inner shelf where
larvae of H.amblyrhynchus and O. saurus were abun-
dant during summer (Figs. 4, 6b), and near the Mis-
sissippi River delta where Trachurus lathami was
abundant during winter and spring had higher coex-
isting ZDV values.

Discussion

C. chrysurus, one of the most abundant and widely
distributed carangids in the Gulf of Mexico, spawn
primarily during summer in waters less than 40 m

Fig. 5a–d H. amblyrhynchus (top to bottom 3.1 mm dorsal and
lateral views, 4.0 mm, and 5.3 mm SL)

Table 4 Mean wet zooplankton
displacement volumes (ml/
100 3) for the northern Gulf of
Mexico from SEAMAP bongo-
net surveys (1982 through
1986). Mean volume was
calculated by summing
individual station densities and
dividing by the number of
stations sampled per region or
depth zone. Month was
summed across years

ND No data

Spring Summer Fall

March April May June July August September October November

Region
Eastern 11.7 9.7 11.9 36.4 15.0 27.4 18.0 24.2 20.0
Central 46.0 6.6 41.6 68.0 85.3 25.3 30.0 38.2 35.0
Western ND 9.3 7.2 53.9 32.2 28.0 30.1 27.0 24.0

Depth zone
<40 m 58.2 120.0 181.6 80.1 76.8 49.9 35.6 52.4 42.5
41–180 m 35.3 27.3 20.5 22.8 14.0 22.5 15.7 16.0 14.4
>180 m 13.8 6.3 8.0 7.2 6.2 7.7 6.4 4.8 7.6
Total stations 137 163 269 306 136 223 152 108 107
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deep (Table 7). The fact that Atlantic bumper grow
more quickly during summer (Leffler and Shaw 1992;
Sanchez-Ramirez and Flores-Coto 1998) when water
temperatures and ZDVs are traditionally high should
not be surprising given that water temperature and
food availability influences growth rates. The overlap-
ping spatial and temporal distributions of higher
quantities of Atlantic bumper and ZDVs suggest that
the availability of food over the inner shelf during
summer may have a positive affect on Atlantic bumper
survival.

We found that the three species of ‘scad’ (Decapte-
rus,Trachurus, and Selar) spawn primarily over the outer
continental shelf, but utilize different spawning strategies
to reduce co-occurrence of larvae. T. lathami are cool-
water spawners (generally 22�C or lower) and are
abundant in the eastern (Leak 1977), central (Ditty and
Truesdale 1984), and southern Gulf of Mexico (Flores-
Coto and Sanchez-Ramirez 1989) during winter/early
spring when large schools of adults are present along the
outer shelf (Leak 1977). In contrast, Decapterus and
Selar spawn in warmer waters (generally above 24�C),
with D. punctatus more abundant in the eastern Gulf
and S. crumenophthalmus more abundant west of the
Mississippi River delta. The fact that schools of adult S.
crumenophthalmus (Reintjes 1979) co-occur along the
outer shelf/shelf break in the western Gulf when larvae
are more abundant is consistent with the possibility that
this area and possibly the southern Gulf (Flores-Coto
and Sanchez-Ramirez 1989) may be a spawning and
nursery area for bigeye scad.

The existence of D. punctatus larvae south of
27� 00¢ N during all months sampled in this study, when
combined with similar findings year-round by Lyons
(1978) and Leak (1981), is consistent with probable
continual spawning and a southward offshore migration
of adults during late fall–early winter (Klima 1971;
Hales 1987), followed by a northward onshore return
during spring. This north–south migration suggests
unsuitable spawning conditions above 27� 00¢ N during
winter and may account for a pattern that has been
interpreted as bimodal spawning in D. punctatus.
Alternately, spawning could be continuous but appear
bimodal (spring and fall) if egg and larval mortality is

higher during the middle of the spawning season
(McBride et al. 2002).

The temporal distribution patterns we found for
Caranx crysos larvae differed from those of Montolio
(1976), who identified large numbers of C. crysos in Gulf
oceanic waters during April–May, with a secondary peak
during August–September. Although SEAMAP bongo-
net surveys from 1982 through 1986 collected 455 sam-
ples in oceanic waters during April and May, only nine
samples contained C. crysos larvae. We suspect that
some, if not most, of Montolio’s larvae smaller than
5 mm are C.hippos/latus or possibly C.bartholomaei/ru-
ber based on the distribution of larvae of these two spe-
cies complexes in this study; the description by
McKenney et al. (1958) of C. crysos larvae; and pig-
mentation differences between Figs. 1 and 2 in Montolio
(1976).

We were unable to separate confidently C. bartholo-
maeifrom C.ruber because collections contained only six
larvae, all smaller than those described previously
(i.e.,C. bartholomaei larger than 6.0 mm, C.ruber larger
than 12.4 mm; Berry 1959). Gill raker counts along the
lower limb separate juveniles and adults of C. hippos
(22–27) from C. latus (16–18), and C. bartholomaei(18–
21) from C.ruber (31–35) (Berry 1959). Adult C. bar-
tholomaei and C. ruber are rare in the survey area and
spawn during spring and summer in oceanic waters
(Berry 1959; Nakamura 1980).

Four species of Seriola (S.dumerili, S. fasciata,
S. rivoliana, and S. zonata) occur in the Gulf, but larvae
of only the banded rudderfish (S. zonata) and greater
amberjack (S. dumerili) have been described (Aprieto
1974; Masuma et al. 1990; Tachihara et al. 1993).
Amberjack larvae smaller than 5 mm were taken from
April through November (Table 1), although some
species may spawn year-round off south Florida (Leak
1981). Reproductive data suggest that S. dumerili spawn
during late spring/early summer (Thompson et al. 1998)
and that S.fasciata spawn during late summer/fall. The
center of S. fasciatadistribution may be off Louisiana
(Thompson and Brown 1994). Reproductive data are
not available for S.rivoliana and S. zonata.

Lookdown larvae (Selene setapinnis) are found pri-
marily in the western region of the Gulf during summer/

Table 5 Spatial and temporal
distribution of wet zooplankton
displacement volumes (ml/
100 m3) for the northern Gulf
of Mexico. Tukey’s multiple
range test established the
significance of distribution
patterns. Different letters within
categories indicate significant
differences at a=0.05

Total stations Mean volume
(SD in parentheses)

Coefficient
of variation

Tukey’s multiple
range test

Region
Eastern 417 21 (31) 144% C
Central 843 42 (64) 152% A
Western 404 31 (44) 142% B

Season
Spring 590 26 (50) 192% B
Summer 707 44 (63) 144% A
Fall 367 29 (31) 108% B

Depth
<40 m 634 67 (73) 92% A
40–180 m 485 21 (19) 92% B
>180 m 545 7 (7) 97% C

1009



Fig. 6a–d Wet zooplankton
displacement volumes (in ml/
100 m3) for the northern Gulf
of Mexico from SEAMAP
bongo-net surveys (1982
through 1986). Seasons were
spring (March–May), summer
(June–August), fall
(September–November), and
winter (December–February).
Border delineates area sampled.
Codes (ml/100 m3) are 1 (<25),
2 (25-49), 3 (50-74), 4 (75-99),
5 (100-150), 6 (>150)
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early fall (Table 7), which is consistent with the higher
reported abundance of lookdown further south off
Mexico (Flores-Coto and Sanchez-Ramirez 1989; Flo-
res-Coto et al. 2000). Although larvae of Selene were not
particularly abundant in SEAMAP samples, larvae of
the Atlantic moonfish (S. vomer) are common off south
Florida (Aprieto 1974; Leak 1981).

The fact that H. amblyrhynchus larvae have only been
collected along the western Louisiana/eastern Texas in-
ner shelf (Table 7) and off Mexico (Flores-Coto et al.
1998) is consistent with the suggestion that adult
bluntnose jack are uncommon in the northern Gulf
(Nakamura 1980; Flores-Coto et al. 2001). Although

adult O. saurus are common (Nakamura 1980), ichthy-
oplankton surveys have collected relatively few larvae.
Based on our findings and other information, O. saurus
spawn during summer over the inner shelf (Table 7).

Three species of pompano (Trachinotus carolinus,
T. falcatus, and T. goodei) occur in the study area, al-
though bongo-net samples contained only two Trachi-
notus larvae (probably T. carolinus), both from oceanic
waters during April. The presence of small larvae during
April is consistent with a late winter/early spring
spawning period for Trachinotus as has been suggested
for United States Atlantic coast waters (Fields 1962;
Fahay 1975). A proposed late winter/early spring

Table 6 Distribution of the larvae of two species of Carangidae
from the northern Gulf of Mexico (1982–1986) relative to con-
centrations of zooplankton and hydrographic conditions. All sta-
tions sampled within the defined region, season, and depth zone

were used in the canonical correlation analysis. Numbers in bold
signify significant correlations. Correlations were ‘strong’ if greater
than 0.70, ‘moderately strong’ if greater than 0.60, ‘significant’ if
greater than 0.50, and ‘weak’ if less than 0.50

Taxon Total
stations
sampled

Canonical P Region Season Depth
zone

Left Root Factor
structure

Right Root Factor
structure

R R2

Decapterus
punctatus

109 0.564 0.318 <0.0001 East Fall <180 m Density –1.000 Zooplankton –0.797
Temperature –0.315
Salinity 0.110
Station depth 0.557

Chloroscombrus
chrysurus

300 0.629 0.395 <0.0001 Central
and west

Summer <40 m Density –1.000 Zooplankton –0.790

Temperature –0.495
Salinity 0.136
Station depth 0.751

Table 7 Spatial and temporal distribution of the larvae of carangids known to occur in the northern Gulf of Mexico

Taxon Adultsa Spawning seasonb Region Depth zonec Literature citedd

Spring Summer Fall Winter East Central West Inner Outer Oceanic

Chloroscombrus chrysurus C X X X X X 1, 2, 3, 4, 5, 6
Decapterus punctatus C ? X X X X X 1, 2, 4, 5, 7, 8, 9
Selar crumenophthalmus C X X X X 1, 2, 4, 13, 19
Trachurus lathami C X X X X X 2, 3, 4, 5, 7, 10, 11, 12
Caranx hippos/latus C X X X X X X 1, 4
C. crysos C X X X X 1, 4, 5, 7, 14, 17
C. bartholomaei/ruber R X X 1, 18
Seriola dumerili C X X ? X ? ? ? 20
S. fasciata C X X X ? ? 21
S. rivoliana C X ? ? X ? ? ? 1
S. zonata C X ? X X X ? 13
Hemicaranx amblyrhynchus R X X X 1, 15
Selene setapinnis ? X X X X 1, 4
S. vomer C X X ? X X 1, 2, 4, 13
Oligoplites saurus C X X X 1, 2, 4, 13, 16, 18
Trachinotus carolinus C ? X X 1, 16, 18
T. falcatus C ? X X 1, 16, 18
T. goodei R 18
Alectis ciliaris R X X ? 1, 2, 10, 18
Elagatis bipinnulata C ? ? X 13, 18
Naucrates ductor R ? 18, 22
Uraspis secunda R 18

aC common, R rare, ? no information
bSpring March–May, summer June–August, fall September–
November, winter December–February
cLess than 40 m, 40–180 m, greater than 180 m
dLiterature cited: 1 This study; 2 Leak 1981; 3 Ditty et al. 1988; 4
Flores-Coto and Sanchez-Ramirez 1989; 5 Shaw and Drullinger

1990; 6 Katsuragawa and Matsuura 1992; 7 Lyons 1978; 8 Hales
1987; 9 Montolio 1976; 10 Finucane et al. 1979a, b; 11 Ditty and
Truesdale 1984; 12 Leak 1977; 13 Aprieto 1974; 14 Goodwin and
Finucane 1985; 15 Hoese 1965; 16 Houde et al. 1979; 17 Klima
1971; 18 Nakamura 1980; 19 Reintjes 1979; 20 Thompson et al.
1998; 21 Thompson and Brown 1994; 22 Fahay 1975
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spawning period is also consistent with finding juvenile
Florida pompano (T.carolinus) and permit (T. falcatus)
relatively common during spring and summer in high-
energy surf zones of the Gulf (Ruple 1984). Collection of
a 5.2 mm T.falcatus larva during August (Flores-Coto
et al. 2000) suggests summer spawning in this species. T.
goodei (palometa) are uncommon in the northern Gulf
(Nakamura 1980).

Bongo-net samples contained only one A. ciliaris
(African pompano) larva and no larvae of E. bipinnula-
ta(rainbow runner), Uraspis secunda(cottonmouth jack),
or Naucrates ductor(pilotfish). A. ciliaris are apparently
rare and larvae have been collected only near the
southern limit of the survey area during summer and
early fall (Table 7). E. bipinnulata spawn in oceanic wa-
ters (Aprieto 1974) and adults are common offshore,
whereas adults of U. secundaand N.ductor are rare (Na-
kamura 1980). We found no documented record of either
U.secunda or N. ductor larvae from the survey area. Fa-
hay (1975), however, collected two young N.ductor
smaller than 12 mm off the United States Atlantic coast
during May, suggestive of early spring spawning.

We found the larvae of several species of carangids
(Chloroscombrus chrysurus, Trachurus lathami,D. punct-
atus, Caranx crysos,O. saurus, and H. amblyrhynchus) in
hydrographically dynamic areas where ZDVs are tradi-
tionally higher (Arnold 1958; Bogdanov et al. 1968;
Khromov 1969; Austin and Jones 1974; Houde and
Chitty 1976; Howey 1976; Dagg et al. 1987). ZDVs are
consistently higher in areas influenced by riverine output
as evidenced by higher volumes near and west of the
Mississippi and Atchafalaya River deltas (Fig. 6), a
relationship consistent with fish adapting their spawning
strategy to local oceanographic conditions in order to
maximize the spatial and temporal coexistence of larvae
and prey (Dickey-Collas et al. 1996).

Most of the nutrient-rich freshwater discharged from
the Mississippi River flows west along the shelf to form a
lower salinity coastal boundary layer that extends 10–
20 km from shore (Ichiye 1962; Cochrane and Kelly
1986; Wiseman et al. 1986). Over 50% of this nutrient-
rich water reaches Texas (Dinnel and Wiseman 1986)

with about a 1-month lag-time (Temple et al. 1977).
During late spring/early summer, southeast winds favor
weak upwelling of cooler waters off Texas (Fig. 7),
which triggers a reversal of coastal boundary layer flow
and convergence of upwelling and riverine waters over
the broad Louisiana/Texas continental shelf. As a result,
lower-salinity nutrient-rich coastal waters turn offshore
(Cochrane and Kelly 1986; Dagg et al. 1991), which can
enhance the physical stratification of the water column
and alter trophic processes [e.g., aggregation of food at
intermediate trophic levels (Dagg 1988)]. Concentrations
of Chloroscombrus chrysurus larvae over the Louisiana/
upper Texas shelf during summer (Fig. 2a) and con-
centrations of T. lathami near the Mississippi River delta
during winter and early spring (Shaw and Drullinger
1990) coincide both spatially and temporally with areas
of higher ZDVs (Fig. 6) and regional oceanographic
processes that could enhance feeding opportunities for
larvae. Similarly, concentrations of Caranx crysos larvae
during summer at stations in a hydrographically dy-
namic area along the outer edge of the continental shelf
(Figs. 2c, 6b) are consistent with a linkage between re-
gional oceanographic processes (e.g., shelf mixing of
riverine and coastal boundary layer waters) and bio-
logical productivity.

Based on the spatial and temporal distributions of
carangid larvae in this study, the abundant but uniden-
tified carangid near the Mississippi River delta during
early fall (Grimes and Finucane 1991) may be the larvae
of C.crysos. Similarly, concentrations of an unidentified
carangid along the eastern edge of the Loop Current
during spring (Richards et al. 1993) may be D. puncta-
tuslarvae. Concentrations of D. punctatus in areas where
ZDVs are higher (Farris 1961; Conand and Franqueville
1973; Ortner et al. 1989; Katsuragawa and Matsuura
1992) should not be surprising given that Decapterus,
Trachurus, and Selar are planktivorous throughout life.

The small number of larval C. crysos taken in SEA-
MAP and other Gulf ichthyoplankton surveys (Flores-
Coto and Sanchez-Ramirez 1989; Katsuragawa and
Matsuura 1992) is surprising given the abundance of
adults in the survey area (Klima 1971). Similarly, the

Fig. 7 Surface water
temperatures in the northern
Gulf of Mexico during summer
(June through August) based on
samples collected during
SEAMAP surveys from 1982
through 1986
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fact that fishery surveys show juvenile and adult
T. lathami,E. bipinnulata, C.hippos/latus, Seriola, and
Trachinotus to be more abundant than ichthyoplankton
surveys suggest inadequate sampling at appropriate
times and locations, gear avoidance, or gear bias. Pat-
terns of abundance vary widely with gear, mesh size, and
depth sampled. In theory, oblique bongo-net tows, such
as those reported here, sample the water column in an
unbiased way (Kingsford 1988). Oblique tows, however,
poorly represent species that primarily occupy surface
waters because bongo nets under-sample narrow vertical
strata. Similarly, larvae of some species may be con-
centrating in deeper waters or near the bottom beyond
depths sampled by SEAMAP protocol.

In conclusion, co-occurrence of concentrations of
larvae of some species of carangids with areas of higher
ZDVs suggests that these areas serve as important
nurseries. While higher total ZDVs are not a direct
measure of food availability of the appropriate size and
species composition (Sameoto 1984), the co-occurrence
of higher concentrations of larvae and zooplankton adds
to the probability of successful feeding, growth, and
survival (Kingsford 1988; Grimes and Finucane 1991).
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